CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis.

نویسندگان

  • S Bak
  • F E Tax
  • K A Feldmann
  • D W Galbraith
  • R Feyereisen
چکیده

Auxins are growth regulators involved in virtually all aspects of plant development. However, little is known about how plants synthesize these essential compounds. We propose that the level of indole-3-acetic acid is regulated by the flux of indole-3-acetaldoxime through a cytochrome P450, CYP83B1, to the glucosinolate pathway. A T-DNA insertion in the CYP83B1 gene leads to plants with a phenotype that suggests severe auxin overproduction, whereas CYP83B1 overexpression leads to loss of apical dominance typical of auxin deficit. CYP83B1 N-hydroxylates indole-3-acetaldoxime to the corresponding aci-nitro compound, 1-aci-nitro-2-indolyl-ethane, with a K(m) of 3 microM and a turnover number of 53 min(-1). The aci-nitro compound formed reacts non-enzymatically with thiol compounds to produce an N-alkyl-thiohydroximate adduct, the committed precursor of glucosinolates. Thus, indole-3-acetaldoxime is the metabolic branch point between the primary auxin indole-3-acetic acid and indole glucosinolate biosynthesis in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis.

In the glucosinolate pathway, the postoxime enzymes have been proposed to have low specificity for the side chain and high specificity for the functional group. Here, we provide biochemical evidence for the functional role of the two cytochromes P450, CYP83A1 and CYP83B1, from Arabidopsis in oxime metabolism in the biosynthesis of glucosinolates. In a detailed analysis of the substrate specific...

متن کامل

Metabolomic, Transcriptional, Hormonal, and Signaling Cross-Talk in Superroot2

Auxin homeostasis is pivotal for normal plant growth and development. The superroot2 (sur2) mutant was initially isolated in a forward genetic screen for auxin overproducers, and SUR2 was suggested to control auxin conjugation and thereby regulate auxin homeostasis. However, the phenotype was not uniform and could not be described as a pure high auxin phenotype, indicating that knockout of CYP8...

متن کامل

The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes.

The Arabidopsis ref2 mutant was identified in a screen for plants having altered fluorescence under UV light. Characterization of the ref2 mutants showed that they contained reduced levels of a number of phenylpropanoid pathway-derived products: sinapoylmalate in leaves, sinapoylcholine in seeds, and syringyl lignin in stems. Surprisingly, positional cloning of the REF2 locus revealed that it e...

متن کامل

Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway.

In plants, the tryptophan biosynthetic pathway provides a number of important secondary metabolites including the growth regulator indole-3-acetic acid (IAA) and indole glucosinolate defense compounds. Genes encoding tryptophan pathway enzymes are transcriptionally induced by a variety of stress signals, presumably to increase the production of both tryptophan and secondary metabolites during d...

متن کامل

Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates.

A new mutant of Arabidopsis designated bus1-1 (for bushy), which exhibited a bushy phenotype with crinkled leaves and retarded vascularization, was characterized. The phenotype was caused by an En-1 insertion in the gene CYP79F1. The deduced protein belongs to the cytochrome P450 superfamily. Because members of the CYP79 subfamily are believed to catalyze the oxidation of amino acids to aldoxim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2001